nickField

FEA software for Electromagnetics, Heat Transfer and Stress Analysis

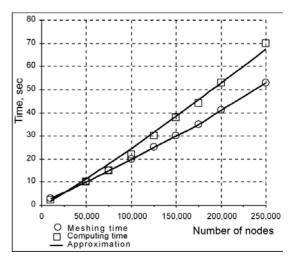
最適な設計ツール を選択していますか?

今日の高度な競争化市場において、解析エンジニア には、より優れた設計と製造が求められ、また、製品コ ストや製造期間の削減が求められています。これらの 目的を達成するためには最適な設計ツールを必要と します。現在、多くのシミュレーション・パッケージが利 用可能になってきましたが、反面、適切な CAE ツール を選ぶことはより複雑になっています。しばしば、多く のそれらの CAE ツールは、その厚いマニュアルを読 み、数週間の長いトレーニングやセミナーを必要としま す。そして、複雑なメニュー・システムを理解し、モデル のパラメータを変更する方法などに精通する必要があ ります。

多くの技術スタッフの努力とその時間を投資した後に、 そのシミュレーション・パッケージがニーズに沿わない ときには、あらたに別のパッケージを捜さなければなら ないかもしれません。そのような懸念を解消するために も Tera Analysis が提供する QuickField は、あなたの ニーズに適したパッケージであることが容易に理解で きるでしょう。もはや解析エンジニアは、数学や計算の エキスパート、あるいは有限要素法の経験者に過ぎな いのではありませんか。物理学を理解していれば、 QuickField のフィールド・モデリングへのアプローチを 容易に利用し、真の解析エンジニアになることができ ます。

先進のプリ・ポストプロセッサ 究極の使い易さ

QuickField は、解析と設計を的確に計画し、実行する ための PC 指向の対話型ツールです。シンプルで直 感的な構造と画期的なプリおよびポストプロセッサを装 備し、非常にユーザ・フレンドリなオブジェクト指向イン ターフェイスを提供します。実際、QuickField の初心 者ユーザは、数時間の学習のみで、特別のトレーニン グを必要とすることなく問題をモデル化し、解析を実行 することができます。


QuickField のプリプロセッサ、モデル・エディタは、モ デルを迅速かつ容易に定義することを可能にします。 あるいは、外部 CAD 幾何学データの DXF 形式ファイ ルをインポート/エクスポートすることができます。モデ ルが構築されたならば、メッシュの作成は非常に容易 です。メッシュ・ジェネレータは自動的に適切なメッシュ を生成します。また、幾何学形状をモデル化し、メッシ ュを手動で最適化することもできます。

QuickField の対話型ポストプロセッサは、任意の輪郭 に沿った、ベクター・プロット、フィールド・ライン、カラ ーマップおよびセクション・プロットなどの様々なグラフ ィカル形式の結果を表示することができます。さらに、 種々の設計パラメータを表示し、任意の表面およびボ リュームの積分量を計算することができる強力な計算 機能を装備しています。その計算結果はファイルとし て出力され、他のプログラムで使用することができます。 いくつかのウィザードは、キャパシタンスやインダクタン スのような最も一般的な積分計算を自動化します。

QuickField の複合的な解析機能により、電場、磁場お よび熱や機械的な応力などを解析することができます。 それらの異なる解析結果は容易にリンクされ、そのマ ルチフィールド連成問題をシミュレートすることができ ます.

比類なき効率性

QuickField において発案された画期的な技術の幾何 学分解法(Geometric Decomposition Method TM) は、従来の有限要素解析の欠点を克服し、非常に効 率的なシミュレーション・ツールを提供します。

QuickField は究極の設計ツールと云われる所以は、 最適設計のために必要とされる多数の解析プロトタイ プを容易に作成でき、それらのパラメータを容易に修 正することができ、その優れた操作性や機能にも高価 なハードウェア・システムが不要なためです。そして、 QuickField は、現在、利用されている他の CAE 製品 より手頃な費用で済むということです。低コストおよび 高い使用頻度をもって実際の効率と呼ばれなければ なりません。

Visit www.quickfield.com
for detailed information, free software, examples and tutorials

Tera Analysis Ltd

QuickField 4.3 仕様

解析機能

- ✓ DC 磁場解析(線形、非線形)
- AC 磁場解析(過渡調和応答渦電流)
- 電流フロー解析
- 熱伝導解析(定常-非定常、線形-非線形)
- 線形応力解析
- 電流 熱伝導、熱伝導 構造解析、 磁場 構造解析、電流 構造解析などの連 成問題解析
- ✓ アクティブ・フィールド技術 タスク自動化、プログラミング機能、 QuickField 内部オブジェクトおよび外部アプ リケーション・オブジェクト操作

磁場解析(Magnetostatics)

- 平面、軸対称問題
- 軸対称モデルにおける回転軸まわりの高精 度近似関数
- 非線形、異方性 磁気特性
- B-H カーブ・エディタ
- 線形、非線形の消磁カーブ特性を持つ永久 磁石
- 超伝導材料

1

- 分配電流、集中電流、総電流
- 回路中のコンダクタ接続
- ディリクレ、ノイマンの境界条件
- エネルギー、自己および相互インダクタンス、 磁力、トルクおよび他の積分量

過渡調和応答磁場解析

(Time-Harmonic Magnetics)

- 平面、軸対称問題
- 軸対称モデルにおける回転軸まわりの高精 度近似関数
- 空気、直交性透磁率、既知の電流、電圧を 持つコンダクタの電流
- 電圧、総電流、マルチ電流ソース、電流密度、 一定外部フィールド
- 回路中のコンダクタ接続
- 初期磁位 (ディリクレ条件)、接線フラックス 密度(ノイマン条件)、規定条件:超伝導材料 表面における0フラックス条件
- 磁位、電流密度、電圧、フラックス密度、電 界強度、力、トルク、ジュール熱、磁気エネ ルギー、インピーダンス、自己および相互イ ンダクタンス

電場解析(Electrostatics)

- 平面、軸対称の問題
- 異方性誘電率
- 分布、集中のチャージ
- 浮導体コンダクタ
- ディリクレ、ノイマンの境界条件
- キャパシタンス、電気的な力およびトルク
- 電場勾配

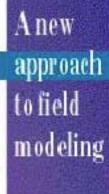
熱伝導解析(Heat Transfer)

- 平面、軸対称の問題
- 定常、非定常な公式化
- 非線形、異方性の特性
- 分配、集中の熱源
- 温度関数による熱源
- 電力損失によって生じる熱源
- 境界温度および熱フラックス
- 伝達/輻射の境界条件

応力解析(Stress Analysis)

- 平面応力、平面ひずみ、軸対称の応力問
- 異方性弾性の特性
- 分布、集中の荷重
- 熱応力、磁気的、電気的な力
- 拘束条件
- フォンミーゼス、トレスカ、Mohr-Coulomb、 Drucker Prager 係数

アクティブ・フィールド(ActiveField)技術


- タスク・コントロール自動処理
- モデル・クラスに従った幾何学定義のパラメ
- 結果計算自動処理
- フィールド・シミュレーション内部関数のアク セス、外部アプリケーションからのアクセス

対応ハードウェア構成

コンピューター: PC および互換機 Windows 95/98/NT/2000/ME/XP メモリ容量:

64 MB RAM 以上推奨 20 MB ディスク・スペース

ソフトウェア・パッケージには、英語 / 日本語マ ニュアル、ソフトウェア・メンテナンスおよびホッ トライン・サポート(電話/ファクシミリ/メール による)が含まれます。

